

Technisches Datenblatt für den Beta- / Photonen-Fingerring (LPS-TLD-TD 08)

Seite 1 von 2

1 Bezeichnung des Dosimeters

Hersteller: Thermo Fisher Scientific

Messstellen – Bezeichnung: LPS-TLD-TD 08 PTB-Zulassungsnummer: DE-18-M-PTB-0043

Dosimetertyp: Thermolumineszenzdetektor

(TLD)

2 Anwendungsbereich

Teilkörperdosimetrie der Hände in gemischten Beta-Gamma-Strahlungsfeldern (andere Anwendungen nach Absprache möglich)

3 Strahlenarten

Photonenstrahlung (Röntgen- und Gammastrahlung) sowie Betastrahlung

4 Störeinflüsse durch andere Strahlenarten

Geringe Messwerterhöhung in Neutronenstrahlungsfeldern ist möglich.

5 Konstruktionsmerkmale der Dosimetersonde

Die Dosimetersonde besteht aus drei Teilen: einem Einweg-Ring, dem Thermolumineszenzdetektor (TLD) auf einem kreisförmigen Träger mit Barcode und einem Abdeckkappe (s. Bild).

Ring: verstellbarer Plastikring aus Polypropylen, Ringstärke 1,3 mm, Ringbreite

7,2 mm

TLD: Typ DXT-RAD 707H aus ⁷LiF:Mg,Cu,P (TLD-707H-2) ir

Form einer Pulverschicht und einem Durchmesser von 2 mm, aufgetragen auf einer Kapton[®]-Trägerfolie. Zur mechanischen Stabilisierung ist diese Folie auf einen Aluminiumring geklebt. Der Aluminiumring ist mit der Dosimetersondennummer versehen (in Klartext als auch in Form eines Bar-

codes).

Abdeckkappe: Eine diskusförmige Linse aus Polycarbonat, deren Dicke im Bereich der

Dosimetersonde ca. 3,3 mg/cm² beträgt. (Visulett-Linse)

Auswerteeinrichtung: Automatischer TLD-Reader Modell Thermo Scientific (HARSHAW)

6600Plus CCD

6 Nenngebrauchsbereich

Messgröße: Oberflächen-Personendosis $H_p(0,07)$

Photonenenergie: 12 keV bis 1250 keV

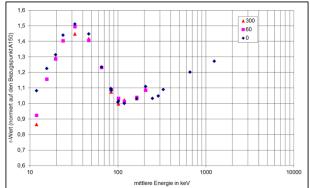
Betaenergie: $E_{\rm R} > 60 \text{ keV}$

Strahlungseinfallsrichtung: 60°

Dosis: 0,3 mSv bis 10.000 mSv

1

Technisches Datenblatt für den Beta- / Photonen-Fingerring (LPS-TLD-TD 08)


Seite 2 von 2

7 Messwertänderungen durch folgende Einflussgrößen im Nenngebrauchsbereich

Messwertverlust durch Temperaturen > 80 °C

Strahlenenergie und Strahleneinfallsrichtung s. Graphik

Wiederholgenauigkeit (> 11 mSv): < 3 %

8 Gebrauchshinweise

Trageposition / Befestigung: am Finger, Fixierung durch verstellbare Lasche

Vorzugsrichtung des Strahlungseinfalls: senkrecht zur Dosimetersonde (TLD-Element muss

zur Strahlenquelle weisen)

Reinigung: Waschmittellösungen, ggf. Alkohol

Desinfektion: keine Angaben vom Hersteller; Instrumentendesinfek-

tionsmittel (z.B. Lysoformin, Gigasept, Desoform)

Sterilisation: keine Angaben vom Hersteller; Ethylenoxid- oder

Formaldehyd-Sterilisation (Plasma-Sterilisation mög-

lich)

Hinweis: Eine Erhitzung des Dosimeters über 80 °C führt zu

einer Verminderung der Do-sisanzeige und ist daher unbedingt zu vermeiden. Daher ist eine Hitzesterilisation der Dosimetersonde z. B. im Dampf-Sterilisator

nicht möglich.

Personenzuordnung: durch die Messstelle mit der Dosimeternummer zur

Person

Möglicher Tragezeitraum: 1 bis 6 Monate

Wiederverwendbarkeit: Übersteigt der Messwert 50 mSv, werden die TLD-

Elemente ausgesondert und auf Tauglichkeit geprüft.

Fading: Im angegebenen Tragezeitraum ist das Fading

vernachlässigbar. Es beträgt pro Jahr max. 6 % bei

Raumtemperatur.

Ein wiederholtes Auslesen des Messwertes ist nicht möglich!

9 Kontaktperson

Bei Fragen zur Teilkörperdosimetrie wenden Sie sich bitte an mich (Tel. 030/6576-3125, Engelhardt@LPS-Berlin.de) oder besuchen Sie unsere Homepage www.LPS-Berlin.de.

gez. Dr. J. Engelhardt

Messstellenleiter Ausgabe August 2018

TD PD-8	Gültig ab: 28.08.2018	Version 2.01